Scheduling for Speed Bounded Processors
نویسندگان
چکیده
We consider online scheduling algorithms in the dynamic speed scaling model, where a processor can scale its speed between 0 and some maximum speed T . The processor uses energy at rate s when run at speed s, where α > 1 is a constant. Most modern processors use dynamic speed scaling to manage their energy usage. This leads to the problem of designing execution strategies that are both energy efficient, and yet have almost optimum performance. We consider two problems in this model and give essentially optimum possible algorithms for them. In the first problem, jobs with arbitrary sizes and deadlines arrive online and the goal is to maximize the throughput, i.e. the total size of jobs completed successfully. We give an algorithm that is 4-competitive for throughput and O(1)-competitive for the energy used. This improves upon the 14 throughput competitive algorithm of Chan et al. [10]. Our throughput guarantee is optimal as any online algorithm must be at least 4-competitive even if the energy concern is ignored [7]. In the second problem, we consider optimizing the trade-off between the total flow time incurred and the energy consumed by the jobs. We give a 4-competitive algorithm to minimize total flow time plus energy for unweighted unit size jobs, and a (2 + o(1))α/ ln α-competitive algorithm to minimize fractional weighted flow time plus energy. Prior to our work, these guarantees were known only when the processor speed was unbounded (T = ∞) [4].
منابع مشابه
Non-clairvoyant Scheduling for Weighted Flow Time and Energy on Speed Bounded Processors
We consider the online scheduling problem of minimizing total weighted flow time plus energy on a processor that can scale its speed dynamically between 0 and some maximum speed T . In the past few years this problem has been studied extensively under the clairvoyant setting, which requires the size of a job to be known when it is released [1, 4, 5, 8, 12, 15, 16, 17]. For the non-clairvoyant s...
متن کاملPre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملPre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems
Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...
متن کاملAn Algorithm for Task Scheduling in Heterogeneous Distributed Systems Using Task Duplication
Task scheduling in heterogeneous parallel and distributed computing environment is a challenging problem. Applications identified by parallel tasks can be represented by directed-acyclic graphs (DAGs). Scheduling refers to the assignment of these parallel tasks on a set of bounded heterogeneous processors connected by high speed networks. Since task assignment is an NP-complete problem, instead...
متن کاملDeadline scheduling and power management for speed bounded processors
Energy consumption has become an important issue in the study of processor scheduling. Energy reduction can be achieved by allowing a processor to vary the speed dynamically (dynamic speed scaling) [2–4, 7, 10] or to enter a sleep state [1, 5, 8]. In the past, these two mechanisms are often studied separately. It is indeed natural to consider an integrated model in which a processor, when awake...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008